EGMO 2013, problem 4. Find all positive integers \(a\) and \(b\) for which there are three consecutive integers at which the polynomial \[P(n)=\frac{n^5+a}{b}\] takes integer values.
EGMO 2013, problem 4. Find all positive integers \(a\) and \(b\) for which there are three consecutive integers at which the polynomial \[P(n)=\frac{n^5+a}{b}\] takes integer values.
Some numbers of the gender gap in Maths Faculty in Germany.
Qualche numero sulla questione di genere nel corpo docenti universitario a Matematica in Germania.
EGMO 2015, Problem 5. Let \(m, n\) be positive integers with \(m > 1\). Anastasia partitions the integers \(1, 2, \dots , 2m\) into \(m\) pairs. Boris then chooses one integer from each pair and finds the sum of these chosen integers. Prove that Anastasia can select the pairs so that Boris cannot make his sum equal to \(n.\)
In this series of posts we would like to talk about women in mathematics who are not as well known as, say, Hypatia or Emmy Noether, and are at the same time quite different from the usual mathematicians' stereotypes. Today we get to know Joan Birman and her story of patience and curiosity.
In questa serie di post vorremmo parlare di matematiche meno famose di, ad esempio, Ipazia o Emmy Noether e che, allo stesso tempo, non corrispondono ai consueti stereotipi sui matematici. Oggi incontriamo Joan Birman e la sua storia di curiosità e pazienza.